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Abstract. Employing highly efficient algorithms for simulating invasion percolation (IP), whose
execution time scales as O[M log(M)] or better for a cluster ofM sites, and for determining the
backbone of the cluster, we obtain precise estimates for the fractal dimensions of the sample-
spanning cluster, the backbone, and the minimal path in order to identify the universality classes
of four different IP processes (site and bond IP, with and without trapping). In two dimensions IP
is characterized bytwouniversality classes, one each for IP without trapping, and site and bond IP
with trapping. In a three-dimensional site IP with and without trapping is in the universality class
of random percolation, while bond IP with trapping is in a distinct universality class, which may
be the same as that of optimal paths in strongly disordered media.

Multiphase flow phenomena in porous media are relevant to many problems of great scientific
and industrial importance, including extraction of oil, gas and geothermal energy from
underground reservoirs, food and soil sciences, powder technology and materials science
[1]. Invasion percolation (IP), a model introduced [2] for describing the evolution of the
interface between an invading and a defending fluid in a porous medium, has provided deep
insight into such phenomena. In addition, IP is relevant to a host of other problems, including
characterization of optimal paths and domain walls in strongly disordered media [3, 4], and
even simulation of the Ising model at the critical temperature [5]. Moreover, IP is one of the
simplest parameter-free models which exhibits self-organized criticality [6], another subject
of current interest.

Two main variants of IP have been studied so far. In nontrapping IP (NTIP) the defending
fluid is compressible and the invading fluid can, potentially, enter any region on the interface
which is occupied by the defending fluid. In the second and more common case, the defending
fluid is incompressible and is trapped if a portion of it is surrounded by the invading fluid. In
addition to the compressibility, one must also take into account the capacity of the fluids to
wet the internal surface of the medium [1]. The process by which a wetting fluid is drawn
spontaneously into a porous medium is called imbibition, while the forcing of a nonwetting
fluid into the pore space is called drainage. We model the porous medium as a network of
pores or sites connected by throats or bonds which have smaller radii than the pores. In IP,
the potential displacement events are ranked according to the capillary pressure threshold that
must be exceeded before that event takes place. During imbibition, the invading fluid is drawn
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first into the smallest constrictions, for which the capillary pressure is large and negative, and it
goes last into the widest pores. Displacement events are therefore ranked in terms of the largest
opening that the invading fluid must travel through, since it is from these larger capillaries that
it is most difficult to displace the defender. Imbibition is therefore asite IP and, in contrast,
drainage in which the invader has most difficulty with the smallest constrictions is abondIP.

Important differences arise in the structure of the invading fluid paths depending on
whether one considers NTIP or TIP [2, 7, 8]. The question of the universality class of IP
has not conclusively been established, and the literature contains contradictory claims about
it. The scaling properties of NTIP are believed to be consistent with random percolation (RP).
For trapping IP (TIP) the fractal dimensionDf of the sample-spanning cluster (SSC) in two
dimensions is smaller than that of RP [2]. In three dimensions no significant difference between
TIP and RP has been reported. It was originally argued [2] that the fractal properties of IP do
not depend on whether one simulates a site or bond IP. Recently, however, it was argued [9]
that important differences arise in the structure of the invading fluid’s paths when comparing
site and bond IP. Portoet al [4] used a mapping from the minimal (shortest) paths in TIP to
the optimal paths in strongly disordered media, and presented numerical evidence that for TIP
the fractal dimensionDmin of the minimal path in all dimensions is not the same as that of RP,
and hence they argued that TIP and RP do not belong to the same universality class. Barabási
[10] argued that loopless bond TIP is in the universality class of RP.

The reason that the universality class of IP has not conclusively been established is the
relatively limited accuracy of the numerical results reported so far. This is due to the difficulty
of simulating IP models, especially TIP, with very large lattices, since forall the present IP
algorithms the simulation time grows as O(NM), whereN is the number of sites (or bonds)
in the lattice andM the number of sites in the cluster. This has severely hampered studies
of IP models. Since the differences between values of various fractal dimensions and scaling
exponents of IP and RP appear to be small, it is critical to be able to use very large lattices to
establish the universality classes of IP models. The purpose of this letter is twofold. First, we
describe a highly efficient algorithm for simulating IP in which the simulation time grows as
O[M log(M)], which enables us to use very large lattices. Second, using the new algorithm
we measure the fractal properties of various IP models with an accuracy which is at least an
order of magnitude better than the best previous estimates. This enables us to test various
hypotheses and conclusively establish the true universality classes of the IP models.

In the conventional algorithms [1, 2, 4, 8] the search for the trapped regions is done after
every invasion event using a Hoshen–Kopelman algorithm [7, 8], which traverses the whole
lattice, labels all the connected regions, and then only those sites (bonds) that are connected
to the outlet face are considered as potential invasion sites (bonds). A second sweep of the
lattice is then done to determine which of the potential sites is to be invaded in the next time
step. Thus, each invasion event demands O(N2) calculations. This is highly inefficient for
two reasons. First, after each invasion event only a small local change is made to the interface;
implementing the global Hoshen–Kopelman search is unnecessary. Secondly, it is wasteful to
traverse the entire network at each step to find the most favourable site on the interface since
the interface is largely static. We tackle the first problem by searching the neighbours of each
newly invaded site to check for trapping. This is ruled out in almost all instances. If trapping
is possible, then several simultaneous breadth-first ‘forest-fire’ searches are used to update
the cluster labelling as necessary [11]. This restricts the changes to the most local region
possible. Since each site can be invaded or trapped at most once during an invasion, this part
of the algorithm scales as O(N). This cluster searching method has some similarities with the
‘perimeter scouting’ algorithm for two-dimensional (2D) clusters [12, 13]. In this algorithm
one checks whether the most recently invaded sites could have been trapped in the interior of
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the cluster. If so, oriented walks are started on the just invaded site, pointing away from it to
the neighbouring sites which are those that neither belong to the cluster nor are candidates for
invasion. The walks continue until all but one of them have again reached the site of origin.
The growth sites visited by these walks are then eliminated from the list of active sites. This
method is effective in two dimensions but not as efficient in three dimensions. Our method
differs from it by searching cluster volumes rather than perimeters, and incorporating local
checking to minimize cluster searching and is thus equally effective in three dimensions.

The second problem is solved by storing the sites (bonds) on the fluid–fluid interface in
a list, sorted according to the capillary pressure threshold needed to invade them. This list is
implemented via a balanced binary search tree, so that insertion and deletion operations on the
list can be performed in log(n) time, wheren is the list size. Sites (bonds) that are designated
trapped using the above-described procedures are removed from the invasion list. Each site
is added and removed from the interface list at most once, limiting the cost of this part of the
algorithm to O[N log(n)]. Thus, the execution time forN sites (bonds) is dominated (for large
N ) by list manipulation and scales at most as O[N log(N)].

While the execution time is approximately O[N log(n)], in practice the time and memory
requirements depend on the total number of lattice sites and those forming the cluster boundary.
For example, we find empirically that for 3D TIP the execution time scales asM1.24, and the
memory use is 20 bytes for each lattice site plus 64 bytes for each cluster site. On a 500 MHz
21164A Alpha microprocessor, a trapping cluster of 2×105 sites is grown on a 181×181×181
lattice in 12.0 s, using 120 Mb of memory, while in two dimensions a cluster of 5×105 sites is
grown on a 2000×2000 lattice in 12.0 s, using only 52 Mb. Complete details of the algorithm,
which can be used for arbitrary networks, are given elsewhere [14].

We have also used a new optimized algorithm to identify the minimal path length, the
sites comprising both the elastic backbone [15], i.e., the set of the sites that lie on the union of
all the shortest paths between two widely separated points, and the usual transport backbone,
so that the backbone search and computations do not affect the overall execution time of the
algorithm. In the past, numerous algorithms have been proposed in the literature [15–18], most
of which are too slow or limited to 2D systems. For example, a recent method [19] that uses a
matching algorithm takes longer to identify the backbone than the percolation algorithm used
here takes to generate it.

An alternative method was recently presented by Babalievski [11], based on depth-first
searching out from the elastic backbone [15] to identify loops of occupied sites. This method
works well for low connectivity clusters but loses efficiency where the SSC is composed of
large well-connected regions. In the latter case, some sites need to be visited numerous times
before their status is decided. The method used here is an optimization of this in which the
distance on the cluster from the inlet face to each cluster site is used to guide the depth-first
search. In this algorithm, there are three major steps which are as follows.

(i) Using a breadth-first search algorithm, we label each site in the cluster with its ‘cluster
distance’ from the inlet face, and then use this information to burn backwards from the
outlet face and identify the elastic backbone. At the same time, we construct the ‘branch
points list’—a list of all the cluster sites that are adjacent to the elastic backbone but are
not part of it. The branch points list should be ordered with the sites closest to the inlet
face listed first. Note that the elastic backbone sites are part of the backbone.

(ii) We stop if the branch points list is empty. Otherwise, we perform a depth-first search from
the last site in the branch points list, flagging all the sites that are visited. During the search,
unexplored branch points are added to the branch points list, while another list tracks the
sites that have been flagged as visited. We then perform an important optimization during
the depth-first search: if there are multiple branches from a single site, the site labelled as
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being closest to the inlet face is always the first to be explored.
(iii) The depth-first search terminates when one of two conditions are satisfied: (1) the search

contacts the backbone again at a different site from whence it started, in which case the
sites in the visited-sites list are flagged as backbone sites; or (2) it retreats back to its
starting site, at which point there will be no sites left in the visited-sites list.

(iv) The algorithm continues at step (ii).

In this way the elastic backbone, the transport backbone and the dangling ends of the SSC are
all identified.

Examples of execution times for this algorithm running in three dimensions on a 533 MHz
21164A Alpha processor are 0.02 and 0.12 CPU s for 323 and 643 lattices, respectively. The
cluster on which these calculations were performed was a SSC generated by a NTIP. When
compared with the timings reported in [19] on an equivalent hardware, our algorithm is faster
by a factor of 7 for the 323 lattice and by a factor of 12 for a 1283 lattice, and thus the larger the
lattice size, the more efficient is this algorithm. Comparison with the other algorithms [15–17]
is also favourable.

We usedLd−1 × 2L lattices ind dimensions with reflecting boundary conditions on the
edges. Cluster properties were measured within the centralLd region. We also considered
lattices of sizeLd−1 × nL in d dimensions, wheren = 4, 8, 16, and measured the cluster
properties within the centralLd region to check for end effects. We also studied the effect
of periodic versus reflecting boundary conditions. The effect on the results was negligible.
The simulations reported in this letter used up to 16 3842 and 5123 lattices in two and three
dimensions, respectively, larger than the largest previously-used lattices by a factor of 5–10.
At least 2000 realizations were used for the largest lattices and over 105 realizations for smaller
L.

We first consider the fractal dimensionDf of the SSC. If we define a local fractal
dimensionsDf (M) ≡ d lnM/d lnL, then according to finite-size scaling (FSS)Df (M) will
converge to the asymptotic value for largeM according to,|Df −Df (M)| ∼ M−α, whereα
is a correction-to-scaling exponent to be estimated from the data. Combining the definition of
Df (M)with the FSS equation gives us a differential equation which has an analytical solution:

c1 +DfM
α = c2L

αDf (1)

wherec1 andc2 are constants. We then fit the data to equation (1) to estimatebothDf and
α simultaneously. By so doing we also avoid statistical pitfalls of the two-stage process used
in [13] in which the data are first divided into various bins, the localDf (M) are estimated
by numerical differentiation of lnM with respect to lnL, and thenDf (M) is plotted versus
M−α andα is varied until the the ‘best’ straight line is obtained. In addition, we also obtain
reliable estimates for the confidence intervals ofα and the fractal dimensions (see below).
From this analysis we obtained,Df ' 1.8949± 0.0009 (α ' 0.475), completely consistent
with the exact value,Df = 91

48 = 1.895 83 for RP. For TIP we obtained,Df ' 1.825±0.004,
more than an order of magnitude more precise than the previous estimates [2–4]. In three
dimensions we found that, as far asDf is concerned, there is no significant difference between
NTIP and TIP, hence confirming explicitly that trapping occurs rarely in three dimensions;
we foundDf ' 2.528± 0.002, consistent with the most recent estimate ofDf for RP [20],
Df ' 2.523± 0.004. Moreover, no difference was found between values ofDf for site and
bond TIP.

However, the universality classes of IP are not determined solely byDf . The fractal
properties of the backbone and the minimal paths, which are particularly important for flow and
transport processes, must also be considered. Our simulations indicate that, as a consequence
of the trapping and the choice of site or bond IP, strong differences exist between the backbone
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Table 1. Fractal dimensions for invasion percolation in two dimensions. Numbers in parenthesis
are the estimates obtained from localDf (M) analysis.

Model Dmin Db

NTIP 1.1293± 0.0010 1.6422± 0.0040
Site TIP 1.214± 0.001 1.217± 0.020
Bond TIP 1.2170± 0.0007 1.217± 0.001
RP 1.1307± 0.0004 1.6432± 0.0008
Optimal paths 1.21± 0.01 1.21± 0.01

Table 2. Backbone and minimal path fractions in three dimensions.

Site IP without trapping

L Runs Xmin Xb

32 100 000 0.002 909(2) 0.012 71(2)
45 75 000 0.001 670(2) 0.008 62(2)
64 50 000 0.000 938(2) 0.005 756(2)
90 30 000 0.000 537 9(8) 0.003 91(2)

128 10 000 0.000 303 8(8) 0.002 61(2)
256 5 000 0.000 098 3(3) 0.001 21(1)
362 5 000 0.000 055 8(8) 0.000 79(1)
512 2 000 0.000 032(1) 0.000 53(1)

Site TIP

L Runs Xmin Xb

32 100 000 0.002 913(2) 0.012 73(3)
45 75 000 0.001 670(2) 0.008 61(2)
64 50 000 0.000 939(1) 0.005 77(2)
90 30 000 0.000 537 9(8) 0.003 87(2)

128 10 000 0.000 304 2(8) 0.002 62(2)
256 5 000 0.000 098 2(3) 0.001 20(1)
362 5 000 0.000 055 7(8) 0.000 79(1)
512 2 000 0.000 032(1) 0.000 53(1)

Bond TIP

L Runs Xmin = Xb

32 100 000 0.001 446(1)
45 75 000 0.000 844(1)
64 50 000 0.000 483(1)
90 30 000 0.000 284(1)

128 10 000 0.000 163(1)
256 5 000 0.000 056 5(3)
362 5 000 0.000 032 9

and the minimal path structures. For site TIPlocal trapping thwarts extensive growth of the
backbone off the minimal path, leading to a greatly diminished backbone. For bond TIP the
backbonecoincideswith the minimal path, which has also been reported previously [3, 4, 9];
see table 1 for the 2D results. The estimated fractal dimensions indicate that the scaling
properties of NTIP are consistent with those of 2D RP [21]:Dmin = 1.1307± 0.0004 and
Db = 1.6432± 0.0008. The estimate forDmin for bond TIP is consistent with the fractal
dimensionDop for the optimal path in the limit of strong disorder [3]. The estimates for site
TIP donot agree withanyestimates for RP.
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Figure 1. (a) Scaling of (mass of the backbone)/LDb versusL for 3D site NTIP, whereDb
is estimated from equation (1). (b) Variations ofα with Db in the confidence region ellipses
corresponding to 90% (solid) and 99% (dashed) confidence intervals.

In three dimensions several thousand realizations for eachL were required to obtain
estimates of sufficient accuracy. As shown in table 2, the backbone and minimal path fractions
are very different for bond TIP. Figure 1 presents the results for the backbone of site NTIP.
The upper figure shows how the ratio of the mass of the backbone andLDb approaches unity
asL becomes large, whereDb is the estimate from equation (1). The data and the fit are
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Figure 2. Same as in figure 1, but for the backbone of 3D bond TIP.

indistinguishable, confirming the accuracy of the estimatedDb. The lower figure shows the
variations ofDb with αb in the confidence region ellipse [22]. As can be seen, requiring 99%
confidence limit (the dashed ellipse) also requires larger error bars. Figure 2 presents the same
but for the backbone of bond TIP, while table 3 summarizes all the estimates in 3D. For site
IP our estimate ofDmin is in agreement with that of RP [18, 19, 21], while the estimate ofDb

is consistent with, but more than an order of magnitude more precise than, the recent estimate
[19], Db ' 1.86± 0.01, for RP. All the results for site IP are consistent with those of RP,
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Table 3. Fractal dimensions for the minimal path and the backbone of invasion percolation in three
dimensions.

Model Dmin Db

Site NTIP 1.3697± 0.0005 1.868± 0.010
Site TIP 1.3697± 0.0005 1.861± 0.005
Bond TIP 1.458± 0.008 1.458± 0.008
RP 1.374± 0.004 1.87± 0.03
Optimal path 1.43± 0.01 1.42± 0.02

and, therefore, the two models belong to the same universality class. Unlike two dimensions
though, the value ofDmin for bond TIP is not in agreement with the fractal dimensionDop

of the optimal path in an energy landscape in the limit of strong disorder [3, 4], although
this may be due to the limited accuracy ofDop. This result demonstrates explicitly that the
fractal dimensions associated with the transport paths (the backbone and the minimal paths)
for bond TIP are distinct from those of RP. Therefore, while the SSC has a fractal dimension
Df consistent with RP, the fractal dimensions associated with the transport paths are close to
that of optimal paths in energy landscapes in the limit of strong disorder.

Summarizing, using a highly efficient algorithm, we have shown that 2D IP is characterized
by twouniversality classes, one for NTIP which is the same as that of RP, and another for bond
and site TIP. In three dimensions, one hastwo distinct universality classes, one for site NTIP
and TIP which is the same as that of RP, and one for bond TIP. Thus, while RP, a static process,
is described by a unique universality class, IP, a dynamical phenomenon, does not possess
a unique universality class. This has important implications for modelling multiphase flow
through porous media: while drainage paths are essentially optimal routes in disordered porous
media, those for imbibition are very different andnot optimal. Moreover, since TIP describes
waterflooding processes in secondary oil recovery, the difference in the topology of the transport
paths for the bond IP (nonwetting fluid invasion) and site IP (wetting fluid invasion) will have
a profound effect on the conductivity of the invading phase at the breakthrough point where a
SSC forms for the first time. This difference has been noted in core-scale measurements of the
conductivity of waterflooded rock under different wetting conditions. For an oil-wet rock the
conductivity of the water channels can be several orders of magnitude smaller at breakthrough
of the invading water phase than for a comparable water-wet rock [23], consistent with the
different topology of the flow paths noted in this letter.
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